空调机组说明如何实现空调区域的温湿度调节和控制 空调机组说明实现空调区域的温湿度调节和控制:是通过温度传感器对环境温度自动进行采样、即时监控,当环境温度高于控制设定...
空调机组说明实现空调区域的温湿度调节和控制:是通过温度传感器对环境温度自动进行采样、即时监控,当环境温度高于控制设定值时控制电路启动,可以设置控制回差。如温度还在升,当升到设定的超限报警温度点时,启动超限报警功能。当被控制的温度不能得到有效的控制时,为了防止设备的毁坏还可以通过跳闸的功能来停止设备继续运行。
1,控制方法一般分为两种;一种是由被冷却对象的温度变化来进行控制,多采用蒸气压力式温度控制器,另一种由被冷却对象的温差变化来进行控制,多采用电子式温度控制器。
2,其采用的模糊控制技术如PID控制,P(Proportional)比例+I(Integral)积分+D(Differential)微分控制。
中央空调在洁净室中有着不可或缺的作用。人和净化为您简述空调系统怎么完成对洁净室温湿度的控制。
中央空调工程洁净室的温湿度控制系统的被控参数是洁净室的温度和湿度。温度与湿度通过温度传感器与湿度传感器输出的电信号送到控制器后,经过A/D转换。控制器根据A/D转换后的温湿度偏差和温湿度偏差变化率,经过模糊自调整PID的调节,然后通过送风温度、回风温度的串级控制和分段控制,并设置了PID控制容限,将PID的输出分成加热、制冷或加湿信号,来分别控制热水阀、冷水阀和加湿阀的开度,从而实现了对室内温湿度的控制。
中央空调工程洁净室的温湿度控制系统该系统设计目标就是根据上述原理来实现对洁净室的温湿度进行监控与控制:在洁净室内可根据需要调节温湿度,或在远程机房内对洁净室内的温湿度进行远程控制,以保证室内温湿度的恒定。
系统会自动根据房间回风温度、送风温度与送风湿度的串级调节,进行模糊PID调节,分段控制冷、热水阀的开度,保证房间温湿度在控制范围内。该系统经过一段时间的运行表明,系统超调量小,控制性能稳定,抗干扰能力强,达到了用户的要求,控制误差在士1度,相对湿度在士5%以内,取得了满意的效果,操作也比较简便,达到了药厂洁净室运行高效率、低成本的目的。
以上就是“空调系统怎么完成对洁净室温湿度的控制?”的相关介绍,有疑问可询安徽人和净化。
组合式空调机组在纺织厂的综合应用,送风部分用组合式空调机组,回风部分采用纺织轴流风机从地沟抽吸过滤后回风,组合式空调机组中间段设计有喷淋段,冷水通过循环水泵直接打到喷淋段,以避免能量的浪费;送风段和回风段均设计压差传感器,送风和回风机全部采用变频器控制。技术要求和系统结构1.技术要求送风温度:18℃?27℃±1℃;送风湿度:50%?65%±5%。2.电气结构项目设计有室外新风检测传感器、室内温湿度检测传感器;新风、回风采用风阀执行器自动控制;冷冻水用电动二通阀门自动控制;送风和回风采用变频器进行控制,以达到控制温湿度和送风量的目的。现场控制器可以选用HONEYWELLXL50控制器带C-BUS通讯接口,上位监控电脑可安装WINDOWS2000操作系统,配置EBI系统软件,通讯转换器可选用台湾MOXA公司的A53。控制原理和方法1.控制原理
1)由新风温湿度传感器测定温湿度后,系统自动计算新风焓值作为工况区域划分和控制的条件,由室内温湿度传感器检测当前的室内值,并计算虚拟露点和露点焓值。
2)根据新风焓值和虚拟露点温度偏差值,经PID算法去调整新、回、排风阀开度和表冷阀开度。
3)根据划分的工况区域和运行区域,自动控制变频器(也可人工调节)调节送、回风量,使设备高效、经济运行,并且满足换气次数及温湿度的控制要求,还可以最大限度的节能。2.DDC程序实现DDC控制分成了开关逻辑、控制方案、时间功能、数学编辑等几个大类,原理控制实际上是将PID控制算法集成实现了许多控制模块,程序编制采用图形化的方式,简单可靠。集中监控系统整个系统由中央监控站、DDC现场控制器(下位机)、现场传感器与执行器三个基本层次组成。本着“分散控制、集中管理”的原则,分布在现场的控制器实现对现场空调设备的实时监控,并配有人机界面,监视空调系统的运行状态及完成工艺参数设置,可在现场独立运行。多台控制器通过网络通讯接口联网,在中央站用计算机实现集中监控与管理,并可根据需要,结合工业控制、通讯网络,将管理数据纳入数据库,构成管理级、监控级、现场级的三级一体化系统,满足企业生产和管理的需要。纺织空调采用自动控制系统可以减少人为的操作弊端,带来管理和技术上的提升,可靠的达到生产工艺的要求。DDC直接数字控制系统在纺织空调中应用是成熟的,开发人员编程方便、控制简单,控制安全可靠。它可以让用户方便的进行操作管理、数据管理、报警管理、报表管理、综合管理,提高企业的新技术应用和综合管理能力。(多文新)
中央空调系统的组成
中央空调系统主要由冷热源、冷冻水系统、冷却水系统、冷却塔和空调末端等组成。与一般中央空调系统不同的地方是该系统的冷源是靠水冷机组提供的,热源是使用市政蒸汽通过热板换进行热量交换增加循环水水温来实现的。采用两台130KW的压缩式冷水机组提供冷源,用于制冷;采用两套热板换进行热交换增加循环水水温,用于制热。这种冷热源的配置方式达到了较好的节能效果。空调末端采用的是新风空调机组和风机盘管两种类型,新风机组主要用于保证室内新鲜空气的质量,控制送风温湿度;风机盘管通过热交换为室内提供冷量和热量。
1.2控制系统的组成
目前,中央空调的控制方法主要有:继电器控制、可编程逻辑控制(PLC控制)、直接数字控制器(DDC控制),更先进的则是采用建筑设备自动化系统(BAS)对中央空调等建筑设备进行监控和系统集成。继电器控制系统由于故障率高、系统复杂、功耗高等缺点已逐渐被淘汰。传统的中央空调控制方法是采用DDC控制方式,将各个温度、湿度检测点和控制点连接到多台DDC上,进行多点监控。但是由于现代智能建筑楼层较多,多组中央空调设备位于不同楼层,温湿度检测点分布于各个房间,采用DDC方式进行控制有着线路复杂、施工不便、资源浪费、系统的实时性和可靠性不高等缺点。PLC控制集成度低于DDC,可以自由编写,价格低,且运行可靠,抗干扰能力强,使用与维护均很方便,这些优点使其得到广泛的应用。
中央空调系统的现场设备有一台西门子的S7-200CPU226PLC作为主控制器;两个EM223数字量输入输出模块,分别为32DI/32DO和8DI/8DO;一个EM2318AI模拟量输入模块;一个EM2324AQ模拟量输出模块;一个EM321RTD热电阻输入模块,提供两路模拟量输入;一个MP277触摸屏最为上位机。上位机负责对整个系统的运行情况进行监测和控制,对各参数进行实时记录,并保存入实时数据库,系统的结构如图1所示:
图1中央空调系统结构图
2系统应用及功能
2.1冷水机组的应用及功能
冷水机组为整个系统提供冷源。冷冻水循环系统通过冷水机组后,将循环水水温降低。然后通过冷冻水泵、集水器供给空调末端。由于冷水机组的发展已经趋于成熟,本文不介绍其内部工作原理。为了满足不同冷量的需求,在冷水机组较为成熟的基础上,对冷水机组的投入数量以及冷量进行精确群控,以达到控制房间温度恒定,且处于功耗平衡的目的。相对于单冷水机组的中央空调系统,群控拥有更多的冷量冗余和更节能的运行策略,可以满足建筑群的不同时段对冷量的不同需求。
2.2控制系统的选型特点与功能
控制系统由S7-200系列PLC及HMI设备组成。在选型方面,由于西门子PLC的稳定性较强,而对于中央空调群控来说,无需大量冗余。所以可以选择西门子S7-200系列PLC来担当控制部分。由西门子EM231模块对现场温度和流量进行采集,以便于运算出当前系统冷量是否充足。通过调节冷冻水泵的转速来调节冷量的输送能力。由于中央空调的冷水机组可以通过出水水温和回水水温自动调节自身工作负荷。所以此类控制由冷水机组自行处理,不在群控PLC中予以干涉。
关于空调温湿度控制系统设计和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。